Skip to content

GRL-v0 Implementation Guide

Purpose: Technical specifications for implementing GRL-v0
Audience: Developers ready to implement GRL
Prerequisites: Familiarity with tutorial chapters


Overview

This directory provides implementation specifications for GRL-v0. Each component is documented with:

  • Theoretical foundation
  • Interface design
  • Implementation details
  • Testing strategy

Architecture Overview

GRL-v0 is organized into four layers spanning both Part I (Reinforcement Fields) and Part II (Emergent Structure):

┌─────────────────────────────────────────────────────────────────┐
│         Layer 4: Abstraction (Part II: Emergent Structure)      │
│  ┌─────────────────────────┐  ┌─────────────────────────────┐  │
│  │  Spectral Clustering    │  │   Concept Hierarchy         │  │
│  │  (Functional clusters)  │  │  (Multi-level abstraction)  │  │
│  └─────────────────────────┘  └─────────────────────────────┘  │
├─────────────────────────────────────────────────────────────────┤
│         Layer 3: Inference (Part I: Reinforcement Fields)       │
│  ┌─────────────────────────┐  ┌─────────────────────────────┐  │
│  │    Policy Inference     │  │   Soft State Transitions    │  │
│  │  (Energy minimization)  │  │  (Distributed successors)   │  │
│  └─────────────────────────┘  └─────────────────────────────┘  │
├─────────────────────────────────────────────────────────────────┤
│         Layer 2: Reinforcement (Part I: Reinforcement Fields)   │
│  ┌─────────────────────────┐  ┌─────────────────────────────┐  │
│  │      RF-SARSA           │  │      MemoryUpdate           │  │
│  │  (Two-layer TD system)  │  │  (Belief transition)        │  │
│  └─────────────────────────┘  └─────────────────────────────┘  │
├─────────────────────────────────────────────────────────────────┤
│         Layer 1: Representation (Part I: Reinforcement Fields)  │
│  ┌─────────────────────────┐  ┌─────────────────────────────┐  │
│  │    Particle Memory      │  │     Kernel Functions        │  │
│  │   (Belief state Ω)      │  │     (RKHS geometry)         │  │
│  └─────────────────────────┘  └─────────────────────────────┘  │
└─────────────────────────────────────────────────────────────────┘

Part I (Layers 1-3): Particle-based learning, reinforcement fields, belief-state inference

Part II (Layer 4): Emergent structure discovery, spectral concept formation, hierarchical control

Based on: Section V of the original paper (Chiu & Huber, 2022)


Implementation Specifications

Core Infrastructure

Spec Component Priority Status
00 Implementation Overview - ⏳ Planned
01 Architecture Design - ⏳ Planned

Layer 1: Representation

Spec Component Priority Status
02 Particle Memory ⭐ 1 ⏳ Planned
03 Kernel Functions ⭐ 2 ⏳ Planned

Layer 2: Reinforcement

Spec Component Priority Status
04 MemoryUpdate Algorithm ⭐ 3 ⏳ Planned
05 RF-SARSA Algorithm ⭐ 4 ⏳ Planned

Layer 3: Inference

Spec Component Priority Status
06 Policy Inference ⭐ 5 ⏳ Planned
07 Soft State Transitions ⭐ 6 ⏳ Planned

Layer 4: Abstraction (Part II)

Spec Component Priority Status
08 Spectral Clustering 🔬 1 ⏳ Planned
09 Concept Discovery 🔬 2 ⏳ Planned
10 Concept Hierarchy 🔬 3 ⏳ Planned
11 Concept-Conditioned Policies 🔬 4 ⏳ Planned

Note: Part II implementation begins after Part I is validated (see Priority 7 below)

Demonstration Environment

Spec Component Priority Status
12 2D Navigation Domain ⭐⭐ 7 ⏳ Planned

Note: This is the primary environment for validating and demonstrating GRL-v0

Supporting Components

Spec Component Status
13 Environment Interface ⏳ Planned
14 Visualization Tools ⏳ Planned
15 Testing Strategy ⏳ Planned
16 Experiment Protocols ⏳ Planned

Implementation Priorities

Priority 1: Particle Memory ⭐

Why first: This IS the agent state. Everything else depends on it.

Key Features:

  • Particle storage: [(z_i, w_i)]
  • Energy queries: E(z) = -Σ w_i k(z, z_i)
  • Association: Find similar particles
  • Management: Add, merge, prune

Priority 2: Kernel Functions

Why second: Defines geometry of augmented space.

Key Features:

  • RBF kernel with ARD
  • Augmented kernel: k((s,θ), (s',θ'))
  • Gradient computation
  • Hyperparameter adaptation

Priority 3: MemoryUpdate (Algorithm 1)

Why third: The belief-state transition operator.

Key Features:

  • Particle instantiation
  • Kernel-based association
  • Weight propagation
  • Regularization

Priority 4: RF-SARSA (Algorithm 2)

Why fourth: Provides reinforcement signals.

Key Features:

  • Primitive SARSA layer
  • Field GP layer
  • Two-layer coupling
  • ARD updates

Priority 5: Policy Inference

Why fifth: How actions are selected.

Key Features:

  • Energy-based selection
  • Boltzmann sampling
  • Greedy mode
  • Gradient-based optimization (optional)

Priority 6: Soft State Transitions

Why sixth: Emergent uncertainty from kernel overlap.

Key Features:

  • Distributed successor states
  • Transition probability from kernel
  • Implicit POMDP interpretation
  • Uncertainty quantification

Priority 7: 2D Navigation Domain ⭐⭐ Critical

Why seventh: Primary validation and demonstration environment.

Purpose:

  1. Reproduce the original paper (Figure 4, Section VI)
  2. Validate all Part I components in a controlled setting
  3. Demonstrate GRL capabilities professionally

Key Features:

  • Continuous 2D state space
  • Parametric movement actions (direction, magnitude)
  • Obstacles, walls, and goals
  • Energy landscape visualization
  • Particle memory visualization
  • Trajectory recording

Deployment Goals:

  • Reproducibility: Match original paper results
  • Professionalism: Publication-quality figures and demos
  • Accessibility:

  • Python API for programmatic use

  • Interactive web interface for exploration
  • Jupyter notebook tutorials
  • Extensibility: Easy to add new scenarios

See: 2D Navigation Specification below


Part II Priorities (After Part I Validated)

Priority 8: Spectral Clustering (Part II)

Why first in Part II: Foundation for concept discovery.

Key Features:

  • Kernel matrix construction from particle memory
  • Eigendecomposition
  • Cluster identification
  • Concept subspace projection (from quantum-inspired Chapter 05)

Priority 9: Concept Discovery

Why second: Automated structure learning.

Key Features:

  • Functional similarity metrics
  • Automatic concept identification
  • Concept naming/labeling
  • Validation metrics

Priority 10: Concept Hierarchy

Why third: Multi-level abstraction.

Key Features:

  • Nested subspace structure
  • Hierarchical composition
  • Transfer across concepts
  • Visualization

Priority 11: Concept-Conditioned Policies

Why fourth: Use discovered structure.

Key Features:

  • Policy per concept
  • Concept-gated execution
  • Hierarchical planning
  • Abstract reasoning

2D Navigation Domain Specification

Overview

The 2D Navigation Domain is the primary environment for GRL-v0 validation and demonstration. Originally introduced in the paper (Figure 4, Section VI), we aim to:

  1. Reproduce existing results with high fidelity
  2. Enhance the domain to professional standards
  3. Deploy as an accessible, interactive demonstration

Domain Description

State Space: \(\mathcal{S} = [0, L_x] \times [0, L_y]\) (continuous 2D position)

Action Space: \(\mathcal{A} = \{(\theta, v) : \theta \in [0, 2\pi), v \in [0, v_{\max}]\}\) - \(\theta\): Direction angle - \(v\): Speed magnitude

Augmented Space: \(\mathcal{Z} = \mathcal{S} \times \mathcal{A}\) (4D continuous)

Dynamics: $\(s_{t+1} = s_t + v \cdot (\cos\theta, \sin\theta) \cdot \Delta t\)$

Obstacles: Polygonal or circular regions (configurable)

Goals: Target positions with rewards


Scenarios (From Original Paper)

Scenario 1: Simple goal-reaching - Single goal, no obstacles - Validate basic particle memory and policy inference

Scenario 2: Navigation with obstacles - Multiple obstacles (replicating Figure 4) - Demonstrate smooth navigation around barriers - Show energy landscape and particle distribution

Scenario 3: Multi-goal task - Multiple goals with different rewards - Demonstrate action-state duality - Show concept emergence (if Part II implemented)


Reproduction Goals

Figure 4 Recreation:

  • Exact environment setup from paper
  • Energy landscape visualization
  • Particle memory visualization
  • Learned trajectory comparison

Quantitative Metrics:

  • Success rate (reaching goal)
  • Path efficiency (vs. optimal)
  • Collision rate (with obstacles)
  • Learning curves (episodes to convergence)

Qualitative Assessment:

  • Smooth, natural trajectories
  • Efficient obstacle avoidance
  • Energy landscape interpretability

Professional Enhancement

Visual Quality:

  • Publication-ready figures (vector graphics)
  • Interactive animations (mp4/gif)
  • Real-time rendering (60 FPS)
  • Multiple view modes:

  • Top-down environment view

  • Energy landscape heatmap
  • Particle distribution overlay
  • Trajectory history

Code Quality:

  • Modular, extensible design
  • Configuration files (YAML/JSON)
  • Logging and metrics
  • Reproducible random seeds

Documentation:

  • API reference
  • Tutorial notebooks
  • Example scripts
  • Performance benchmarks

Deployment Plan

Phase 1: Core Implementation

Components:

  • Environment class (Nav2DEnv)
  • Rendering engine
  • Action space handling
  • Reward function

Deliverables:

  • Python package installable via pip
  • Basic visualization
  • Unit tests

Phase 2: GRL Integration

Components:

  • Particle memory integration
  • MemoryUpdate in navigation loop
  • RF-SARSA training
  • Energy landscape computation

Deliverables:

  • Training scripts
  • Evaluation scripts
  • Experiment configs

Phase 3: Professional Demo

Components:

  • Interactive Jupyter notebooks
  • Web-based interface (Flask/FastAPI + React)
  • Video demonstrations
  • Benchmark suite

Deliverables:

  • Hosted web demo (e.g., Hugging Face Spaces, Streamlit)
  • Tutorial video
  • Blog post

Web Interface Features

Interactive Controls:

  • Place obstacles (drag-and-drop)
  • Set goal positions
  • Adjust GRL hyperparameters (kernel bandwidth, temperature)
  • Start/stop/reset simulation

Visualizations:

  • Real-time agent movement
  • Energy landscape evolution
  • Particle memory growth
  • Learning curves

Export:

  • Save trajectories
  • Download figures
  • Export particle memory

Sharing:

  • Permalink to configurations
  • Embed in documentation
  • Public gallery of scenarios

API Design

from grl.envs import Nav2DEnv
from grl.agents import GRLAgent

# Create environment
env = Nav2DEnv(
    size=(10, 10),
    obstacles=[
        {"type": "circle", "center": (5, 5), "radius": 1.5},
        {"type": "polygon", "vertices": [(2, 2), (3, 2), (3, 3)]},
    ],
    goal=(9, 9),
    goal_reward=10.0,
)

# Create GRL agent
agent = GRLAgent(
    kernel="rbf",
    lengthscale=1.0,
    temperature=0.1,
)

# Training loop
for episode in range(num_episodes):
    state = env.reset()
    done = False

    while not done:
        action = agent.act(state)
        next_state, reward, done, info = env.step(action)
        agent.update(state, action, reward, next_state)
        state = next_state

    # Visualize
    if episode % 10 == 0:
        env.render(show_particles=True, show_energy=True)
        agent.save_memory(f"memory_ep{episode}.pkl")

# Evaluate
success_rate, avg_path_length = evaluate(agent, env, num_trials=100)

Timeline

Week 1-2: Core environment implementation Week 3-4: GRL integration and training Week 5-6: Visualization and demos Week 7-8: Web interface and deployment Week 9-10: Documentation and tutorials

Target: Complete professional 2D navigation demo by March 2026


Application Domains Beyond 2D Navigation

Philosophy: GRL as a Generalization

Key Insight: Traditional RL is a special case of GRL when:

  • Action space is discrete → GRL with fixed parametric mappings
  • Action space is finite → GRL with finite operator set
  • Q-learning → GRL with trivial augmentation (state only)

Strategic Goal: Demonstrate that GRL subsumes classical RL, including modern applications like:

  • RLHF for LLMs (Reinforcement Learning from Human Feedback)
  • PPO/SAC for continuous control

  • DQN for discrete actions

  • Actor-critic methods

This positions GRL not as "another RL algorithm" but as a unifying framework that recovers existing methods as special cases while enabling new capabilities.


Priority Application Domains

Tier 1: Validation Environments (Demonstrate Correctness)

Goal: Show GRL recovers classical RL results

Domain Type Classical Baseline GRL Advantage Status
2D Navigation Continuous control N/A (novel) Smooth generalization ⏳ Priority 7
CartPole Discrete control DQN Continuous action variant 📋 Planned
Pendulum Continuous control DDPG, SAC Parametric torque 📋 Planned
MuJoCo Ant Robotics PPO, SAC Compositional gaits 📋 Planned

Tier 2: Strategic Environments (Demonstrate Generality)

Goal: Show GRL applies to modern RL problems, including LLMs

Note: These are theoretical connections with potential future implementations. Each would require significant engineering effort.

Domain Type Why Important Theoretical Connection Implementation
LLM Fine-tuning (RLHF) Discrete (tokens) Massive industry relevance Token selection as discrete action, PPO as special case 🔬 Exploratory
Prompt Optimization Discrete sequences Growing field Parametric prompt generation in embedding space 🔬 Exploratory
Molecule Design Graph generation Drug discovery Parametric molecule operators 🔬 Exploratory
Neural Architecture Search Discrete choices AutoML Compositional architecture operators 🔬 Exploratory

Primary Value: Demonstrating that GRL theoretically generalizes existing methods used in commercially relevant problems (RLHF, prompt tuning, etc.)

Implementation Reality: These are massive undertakings comparable to full research projects. They serve as:

  • Motivation for why GRL matters
  • Future directions if resources/collaborators available
  • Examples in theoretical justification documents

Tier 3: Novel Environments (Demonstrate Unique Capabilities)

Goal: Show what GRL enables that classical RL cannot do easily

Domain Type Novel Capability Why GRL Shines Status
Physics Simulation Continuous fields Apply force fields, not point forces Operator actions on state space 📋 Planned
Fluid Control PDE-governed Manipulate flow fields Field operators, neural operators 📋 Planned
Image Editing High-dim continuous Parametric transformations Smooth action manifolds 📋 Planned
Multi-Robot Coordination Continuous, multi-agent Compositional team behaviors Operator algebra 📋 Planned

Recovering Classical RL: A Bridge to Adoption

Document: docs/GRL0/recovering_classical_rl.md (to be created)

Purpose: Show step-by-step how classical RL algorithms emerge from GRL as special cases

Contents:

  1. Q-learning from GRL

  2. Discrete action space as fixed parametric mapping

  3. Particle memory as replay buffer
  4. TD update as special case of MemoryUpdate

  5. DQN from GRL

  6. Neural network Q-function as continuous approximation of particle field

  7. Experience replay as particle subsampling
  8. Target networks as delayed MemoryUpdate

  9. Policy Gradient (REINFORCE) from GRL

  10. Boltzmann policy from energy landscape

  11. Score function gradient as field gradient
  12. Baseline as energy normalization

  13. Actor-Critic (PPO, SAC) from GRL

  14. Actor = policy inference from field

  15. Critic = reinforcement field itself
  16. Entropy regularization as temperature parameter

  17. RLHF for LLMs from GRL

  18. Token selection as discrete action

  19. Reward model as energy function
  20. PPO update as special case of RF-SARSA

Impact: This document becomes the key reference for convincing classical RL researchers that GRL is not alien, but a natural generalization.


LLM Fine-tuning as a GRL Application (Exploratory)

Status: Theoretical connection established, implementation exploratory

Why This Is Interesting:

  • Relevance: RLHF is used for ChatGPT, Claude, Llama, Gemini
  • Familiarity: Most ML researchers understand this problem
  • Validation: If GRL generalizes RLHF theoretically, it validates the framework's breadth

Theoretical Formulation

State: \(s_t\) = (prompt, partial response up to token \(t\))

Action: \(a_t \in \mathcal{V}\) where \(\mathcal{V}\) = vocabulary (discrete)

GRL View:

  • Augmented space: \((s_t, \theta_t)\) where \(\theta_t\) represents token choice
  • Particle memory: stores (prompt, response, reward) experiences
  • Reinforcement field: \(Q^+(s_t, \theta_t)\) over semantic embedding
  • Policy inference: Sample from Boltzmann over \(Q^+\)

Key Insight: Standard RLHF (PPO) is GRL with:

  • Discrete action space (tokens)
  • Neural network approximation of field
  • On-policy sampling

This theoretical connection is documented in: Recovering Classical RL from GRL


Potential GRL Advantages (Theoretical)

  • Off-policy learning: Particle memory could enable experience replay
  • Smooth generalization: Nearby prompts might share value via kernel
  • Uncertainty: Sparse particles could indicate high uncertainty
  • Interpretability: Energy landscape over prompt space

However: These advantages are speculative without empirical validation.


Implementation Reality

Challenges:

  1. Infrastructure: Requires reward model training, human feedback data, preference datasets
  2. Computational cost: LLM fine-tuning is expensive (even GPT-2)
  3. Comparison difficulty: Matching PPO requires careful hyperparameter tuning
  4. Integration: Modern RLHF uses TRL, transformers, accelerate — non-trivial to integrate
  5. Validation: Showing clear advantages requires extensive controlled experiments

Estimated Effort: 6-12 months of focused work with GPU resources

When to Pursue:

  • ✅ After GRL validated on simpler environments (2D Nav, classical RL)
  • ✅ If collaborators or funding available
  • ✅ If clear path to demonstrating advantages
  • ✅ If access to human feedback datasets

Realistic First Step (if pursued):

  • Toy RLHF-like problem (small vocabulary, simple preference task)
  • Not real LLM, but demonstrates GRL can handle discrete sequential choices
  • Fast iteration, low compute cost

Environment Simulation Package Structure

Given the scope of applications, we'll need a well-organized environment package:

src/grl/envs/
├── __init__.py
├── base_env.py                 # GRL environment interface
├── validation/                 # Tier 1: Classical RL baselines
│   ├── nav2d.py               # 2D navigation (Priority 7)
│   ├── cartpole.py            # Discrete control
│   ├── pendulum.py            # Continuous control
│   └── mujoco_envs.py         # Robotics (Ant, Humanoid)
├── strategic/                  # Tier 2: Modern RL applications
│   ├── llm_finetuning.py      # 🔥 RLHF for LLMs (High Priority)
│   ├── prompt_optimization.py  # Prompt tuning
│   ├── molecule_design.py      # Drug discovery
│   └── nas.py                  # Neural Architecture Search
├── novel/                      # Tier 3: GRL-native applications
│   ├── physics_sim.py          # Force field control
│   ├── fluid_control.py        # PDE-governed systems
│   ├── image_editing.py        # Parametric image transforms
│   └── multi_robot.py          # Multi-agent coordination
├── wrappers/                   # Adapters for existing environments
│   ├── gym_wrapper.py          # OpenAI Gym → GRL
│   ├── gymnasium_wrapper.py    # Gymnasium → GRL
│   ├── dm_control_wrapper.py   # DeepMind Control → GRL
│   └── rlhf_wrapper.py         # TRL/transformers → GRL
└── scenarios/                  # Predefined configurations
    ├── paper_scenarios.py      # Scenarios from original paper
    ├── benchmark_suite.py      # Standard benchmarks
    └── tutorials.py            # Teaching examples

Key Design Principle:

  • Wrappers allow GRL to be applied to any existing RL environment

  • Native environments showcase GRL's unique capabilities

  • Scenarios provide reproducible experiments

Strategic Roadmap Update

Phase 1 (Q1 2026): Foundation ⭐⭐⭐ - Complete Part I tutorial - Implement core GRL components - ✅ 2D Navigation validated

Phase 2 (Q2 2026): Classical RL Recovery ⭐⭐ - Implement wrappers (Gym, Gymnasium) - Reproduce DQN on CartPole - Reproduce SAC on Pendulum - Document: "Recovering Classical RL from GRL" ✅ Complete - Paper A submission

Phase 3 (Q3-Q4 2026): Novel Contributions ⭐ - Amplitude-based RL (if promising) - MDL consolidation - Concept-based mixture of experts - Papers B & C submissions

Future Directions (No timeline):

  • Theoretical articles: Justify how RLHF, prompt optimization, molecule design are special cases
  • Implementation: If resources/collaborators available, pick 1-2 strategic applications
  • Novel applications: Physics simulation, multi-robot coordination (GRL-native capabilities)

Success Metrics

Technical (Achievable):

  • 2D Navigation demo complete with professional web interface
  • GRL recovers DQN/SAC results on classical benchmarks (±5% performance)
  • Classical RL wrappers work with existing environments
  • Documentation complete and accessible

Research (Achievable):

  • Part I tutorial complete (Chapters 0-10)
  • Part II foundation (concept subspaces formalized)
  • "Recovering Classical RL" document demonstrates generality
  • Paper A submitted (operator formalism)
  • 1-2 papers on novel contributions (amplitude-based RL or MDL consolidation)

Adoption (Aspirational):

  • GitHub stars: 100+ (realistic), 1000+ (stretch)
  • External users beyond our lab
  • Cited in other papers
  • Conference workshop or tutorial (if invited)

Strategic Applications (Aspirational, No Timeline):

  • Theoretical articles justify RLHF/prompt-opt as special cases
  • If resources available: implement 1-2 strategic applications
  • Industry partnerships (if opportunities arise)

Code Structure

src/grl/
├── __init__.py
├── core/
│   ├── particle_memory.py          # Priority 1: Particle state
│   ├── kernels.py                  # Priority 2: RKHS geometry
│   └── soft_transitions.py         # Priority 6: Emergent uncertainty
├── algorithms/
│   ├── memory_update.py            # Priority 3: Belief transition
│   ├── rf_sarsa.py                 # Priority 4: TD learning
│   └── policy_inference.py         # Priority 5: Action selection
├── concepts/                        # Part II: Emergent Structure
│   ├── spectral_clustering.py      # Priority 8: Functional clustering
│   ├── concept_discovery.py        # Priority 9: Automated structure
│   ├── concept_hierarchy.py        # Priority 10: Multi-level abstraction
│   └── concept_policies.py         # Priority 11: Hierarchical control
├── envs/
│   ├── nav2d.py                    # Priority 7: 2D Navigation Domain
│   ├── scenarios.py                # Predefined scenarios (Figure 4)
│   └── base_env.py                 # Environment interface
├── agents/
│   ├── grl_agent.py                # Complete GRL agent
│   └── evaluation.py               # Agent evaluation tools
├── utils/
│   ├── config.py                   # Configuration management
│   ├── reproducibility.py          # Random seeds, determinism
│   └── metrics.py                  # Performance metrics
├── visualization/
│   ├── energy_landscape.py         # Energy field heatmaps
│   ├── particle_viz.py             # Particle memory plots
│   ├── trajectory_viz.py           # Agent trajectories
│   └── concept_viz.py              # Concept subspace plots (Part II)
└── web/                            # Web deployment (Priority 7)
    ├── api.py                      # FastAPI backend
    ├── static/                     # Frontend assets
    └── templates/                  # HTML templates

Dependencies

Core Dependencies

torch >= 2.0              # Neural operators, gradient computation
numpy >= 1.24             # Numerical operations
scipy >= 1.10             # Scientific computing, optimization
gpytorch >= 1.10          # Gaussian processes (optional)
scikit-learn >= 1.3       # Spectral clustering (Part II)

Visualization

matplotlib >= 3.7         # Static plots
seaborn >= 0.12          # Statistical visualization
plotly >= 5.14           # Interactive plots

Web Deployment (Priority 7)

fastapi >= 0.104         # Backend API
uvicorn >= 0.24          # ASGI server
pydantic >= 2.4          # Data validation
jinja2 >= 3.1            # Templating

Development

pytest >= 7.4            # Testing
black >= 23.9            # Code formatting
mypy >= 1.6              # Type checking
sphinx >= 7.2            # Documentation

Quality Standards

Code Quality

  • All public functions have docstrings (NumPy style)
  • Type hints throughout (Python 3.10+)
  • Unit test coverage > 80%
  • No linting errors (black, mypy, flake8)
  • Examples run without modification
  • Math notation matches paper

Part I Validation

  • Reproduce original paper results (Figure 4)
  • MemoryUpdate converges
  • RF-SARSA learns effectively
  • Energy landscapes are smooth
  • Particle memory grows/prunes correctly

Part II Validation (After Part I)

  • Spectral clustering identifies meaningful concepts
  • Concept hierarchy is interpretable
  • Concept-conditioned policies improve performance
  • Transfer learning across concepts works

2D Navigation Demo

  • Web interface is responsive and intuitive
  • Visualizations render at 60 FPS
  • All scenarios from paper work
  • Export/sharing functionality works
  • Tutorial notebooks are clear and complete

Summary

GRL-v0 Implementation spans:

  • Part I (Layers 1-3): Particle-based reinforcement fields
  • Part II (Layer 4): Emergent structure and concept discovery
  • Demonstration: Professional 2D navigation domain with web deployment

Priority Order:

  1. Part I foundations (Priorities 1-6)
  2. 2D Navigation validation (Priority 7) ⭐⭐ Critical milestone

  3. Part II extensions (Priorities 8-11)

  4. Additional environments and experiments

Target: Complete 2D navigation demo by March 2026

See also: Research Roadmap for broader research plan


Last Updated: January 14, 2026