Field Series: From Vector Fields to Reinforcement Fields¶
Understanding GRL's Core Concept Through Progressive Visualization
This series of notebooks builds intuition for GRL's reinforcement field by starting with familiar concepts (classical vector fields) and progressively introducing the abstract notion of functional fields.
Series Overview¶
┌─────────────────────────────────────────┐
│ Notebook 1: Classical Vector Fields │
│ (Concrete: arrows at points) │
└──────────────┬──────────────────────────┘
│ You understand: arrows at points
↓
┌─────────────────────────────────────────┐
│ Notebook 2: Functional Fields │
│ (Abstract: functions as vectors) │
└──────────────┬──────────────────────────┘
│ You understand: functions at points
↓
┌─────────────────────────────────────────┐
│ Notebook 3: Reinforcement Fields │
│ (GRL's Q⁺ field in RKHS) │
└─────────────────────────────────────────┘
│ You understand: GRL's learning mechanism!
Notebooks¶
| # | Notebook | Status | Description |
|---|---|---|---|
| 0 | 00_intro_vector_fields.ipynb |
✅ Complete | Gentle intro with real-world examples (optional) |
| 1 | 01_classical_vector_fields.ipynb |
✅ Complete | Gradient fields, rotational fields, superposition, trajectories |
| 1a | 01a_vector_fields_and_odes.ipynb |
✅ Complete | ODEs, numerical solvers (Euler/RK4), flow matching connection 🔗 |
| 2 | 02_functional_fields.ipynb |
✅ Complete | Functions as vectors, kernels, RKHS intuition |
| 3 | 03_reinforcement_fields/ |
✅ Complete | GRL's Q⁺ field, 2D navigation domain, policy inference 📁 |
Note: Notebook 3 is in a subdirectory with supplementary materials:
03_reinforcement_fields/03_reinforcement_fields.ipynb— Main notebook03_reinforcement_fields/03a_particle_coverage_effects.ipynb— Visual proof of particle coverage effects03_reinforcement_fields/particle_vs_gradient_fields.md— Theory note
📋 See ROADMAP.md for planned future notebooks (Policy Inference, Memory Update, RF-SARSA)
Key Concepts¶
Notebook 1: Classical Vector Fields¶
- Vector field definition: \(\mathbf{F}(x, y) = [F_x(x,y), F_y(x,y)]^T\)
- Gradient fields: \(\nabla V\) points uphill on potential \(V\)
- Rotational fields: Circular flow, curl
- Superposition: \(\mathbf{F}_{\text{total}} = \mathbf{F}_1 + \mathbf{F}_2\)
- Trajectories: Following the field to find extrema
Notebook 2: Functional Fields¶
- Functions as vectors: Addition, scaling, inner products
- Kernel functions: \(k(x, x')\) as similarity measure
- RKHS: Reproducing Kernel Hilbert Space
- Functional gradient: Gradient in function space
Notebook 3: Reinforcement Fields¶
- Augmented space: \(z = (s, \theta)\) — state-action pairs
- Particle memory: \(\{(z_i, w_i)\}\) — weighted experience points
- Reinforcement field: \(Q^+(z) = \sum_i w_i \, k(z, z_i)\)
- Policy inference: Reading the field to choose actions
Related Projects¶
🔗 genai-lab — Generative AI & Diffusion Models¶
Notebook 1a bridges to the genai-lab project, which covers flow matching and diffusion models — both built on the same vector field / ODE foundations:
| Topic | genai-lab Document |
|---|---|
| Flow Matching | docs/flow_matching/01_flow_matching_foundations.md |
| Diffusion Models | docs/DDPM/01_ddpm_foundations.md |
| Diffusion Transformers | docs/diffusion/DiT/diffusion_transformer.md |
Shared concepts: Velocity fields, ODE solvers (Euler, RK4), probability transport, gradient-based sampling.
Learning Paths¶
Quick Visual Tour (~45 min)¶
Run through all three notebooks, focusing on visualizations.
Deep Understanding (~2 hours)¶
Combine notebooks with tutorial chapters:
- Notebook 2 → Tutorial Ch 2: RKHS Foundations
- Notebook 3 → Tutorial Ch 4: Reinforcement Field
Running the Notebooks¶
Dependencies¶
Related Documentation¶
Last Updated: January 15, 2026